Error Bounds for Gaussian Quadrature and Weighted-$L^1$ Polynomial Approximation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Bounds for Gauss-kronrod Quadrature Formulae

The Gauss-Kronrod quadrature formula Qi//+X is used for a practical estimate of the error R^j of an approximate integration using the Gaussian quadrature formula Q% . Studying an often-used theoretical quality measure, for ߣ* , we prove best presently known bounds for the error constants cs(RTMx)= sup \RlK+x[f]\ ll/(l»lloo<l in the case s = "Sn + 2 + tc , k = L^J LfJ • A comparison with the Ga...

متن کامل

Polynomial approximation and quadrature on geographic rectangles

Using some recent results on subperiodic trigonometric interpolation and quadrature, and the theory of admissible meshes for multivariate polynomial approximation, we study product Gaussian quadrature, hyperinterpolation and interpolation on some regions of Sd, d ≥ 2. Such regions include caps, zones, slices and more generally spherical rectangles defined by longitudes and (co)latitudes (geogra...

متن کامل

L1 bounds in normal approximation

The zero bias distribution W * of W , defined though the characterizing equation EW f (W) = σ 2 Ef ′ (W *) for all smooth functions f , exists for all W with mean zero and finite variance σ 2. For W and W * defined on the same probability space, the L 1 distance between F , the distribution function of W with EW = 0 and Var(W) = 1, and the cumulative standard normal Φ has the simple upper bound...

متن کامل

Tighter error bounds and weighted error metrics for hierarchical radiosity

In this paper we first derive a tighter error bound on form factors as a subdivision criterion for the hierarchical radiosity algorithm. Such an error bound can reduce more unnecessary links and improve the performance of the hierarchical radiosity algorithm to meet a user-specified error tolerance. We then propose a weighted error metric in form factor computation such that more effort is auto...

متن کامل

Error Bounds for Polynomial Spline Interpolation

New upper and lower bounds for the L2 and Vo norms of derivatives of the error in polynomial spline interpolation are derived. These results improve corresponding results of Ahlberg, Nilson, and Walsh, cf. [1], and Schultz and Varga, cf. [5].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 1984

ISSN: 0036-1429,1095-7170

DOI: 10.1137/0721030